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Stability of simple periodic orbits and chaos in a Fermi-Pasta-Ulam lattice
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We investigate the connection between local and global dynamics in the Fermi-Pasta-Ulam �FPU� � model
from the point of view of stability of its simplest periodic orbits �SPO’s�. In particular, we show that there is
a relatively high-q mode �q=2�N+1� /3� of the linear lattice, having one particle fixed every two oppositely
moving ones �called SPO2 here�, which can be exactly continued to the nonlinear case for N=5+3m, m
=0,1 ,2 , . . ., and whose first destabilization E2u, as the energy �or �� increases for any fixed N, practically
coincides with the onset of a “weak” form of chaos preceding the breakdown of FPU recurrences, as predicted
recently in a similar study of the continuation of a very low �q=3� mode of the corresponding linear chain.

This energy threshold per particle behaves like
E2u

N �N−2. We also follow exactly the properties of another SPO
�with q= �N+1� /2� in which fixed and moving particles are interchanged �called SPO1 here� and which

destabilizes at higher energies than SPO2, since
E1u

N �N−1. We find that, immediately after their first destabili-
zation, these SPO’s have different �positive� Lyapunov spectra in their vicinity. However, as the energy
increases further �at fixed N�, these spectra converge to the same exponentially decreasing function, thus
providing strong evidence that the chaotic regions around SPO1 and SPO2 have “merged” and large-scale
chaos has spread throughout the lattice. Since these results hold for N arbitrarily large, they suggest a direct
approach by which one can use local stability analysis of SPO’s to estimate the energy threshold at which a
transition to ergodicity occurs and thermodynamic properties such as Kolmogorov-Sinai entropies per particle
can be computed for similar one-dimensional lattices.

DOI: 10.1103/PhysRevE.73.056206 PACS number�s�: 05.45.�a, 45.20.Jj, 47.10.Df
I. INTRODUCTION

The transition to widespread chaos in Hamiltonian sys-
tems of many degrees of freedom has been the subject of
intense investigation for more than 50 years; see, e.g., Refs.
�1–4�. It received great impetus following the pioneering
work of Fermi, Pasta, and Ulam �FPU� �5�, who were the
first to study thermalization in one-dimensional lattices of N
particles, with linear and nonlinear nearest-neighbor forces,
as a parameter multiplying the nonlinear terms in the equa-
tions of motion becomes greater than zero. Surprisingly, they
observed that when this parameter is relatively small, energy
equipartition does not occur even after very long integration
times, as only a small number of �low-q� modes of the cor-
responding linear lattice recurrently exchange the total en-
ergy among them. Of course, when the nonlinearity or the
energy exceeds a certain threshold, these so-called FPU re-
currences break down, large-scale chaos prevails, and a type
of ergodicity sets in, whereby almost every orbit explores
almost all of the available phase space of the system.

One of the first attempts to explain this phenomenon is
due to Izrailev and Chirikov �6�, who argued that the break-
down of FPU recurrences is related to the overlap of major
resonances known to lead to large-scale chaos in
N-degrees-of-freedom Hamiltonian systems �7�. As was later
realized, however, a weaker form of chaos caused by the
interaction of the first few FPU modes �with low q in Fourier
space� appears to be sufficient for equipartition among all
modes to occur �8,9�. Finally, very recently, Flach and co-
workers �10� discovered that this transition to so-called
“weak” chaos, in fact, coincides with the first destabilization
of one of the lowest �q=3� normal mode of the linear lattice,

as is continued by increasing the nonlinearity parameter. In
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fact, their results apply more generally to the lowest q�N
modes which also turn out to be highly localized in q space.
These nonlinear modes represent examples of what we call
simple periodic orbits �SPO’s�, where all particles return to
their initial condition after only one oscillation; i.e., all their
mutual rotation numbers are unity �11�. Such lowest-q-mode
SPO’s were actually termed q breathers due to their expo-
nential localization in Fourier space �10�.

In this paper, we investigate further the connection be-
tween local and global dynamics of the FPU lattice by study-
ing the stability properties of its SPO’s. In particular, we
consider the FPU Hamiltonian

H =
1

2�
j=1

N

ẋj
2 + �

j=0

N �1

2
�xj+1 − xj�2 +

1

4
��xj+1 − xj�4� = E ,

�1�

often called the FPU � model, as it only contains the term
with quartic nonlinearities. The xj represents the displace-
ment of the jth particle from its equilibrium position, ẋj is the
corresponding velocity, � is a positive real constant, and E is
the total energy. As with the original FPU problem, we will
concern ourselves only with fixed boundary conditions,
whereby particles with index j=0,N+1 are stationary for all
time.

In particular, we will examine an SPO which keeps every
third particle fixed, while the two in between are performing
exactly opposite motions. This mode was studied in Ref. �12�
where its stability was analyzed by means of Mathieu equa-
tions and has also been discussed in Ref. �13� in connection
with the occurrence of sinusoidal waves in nonlinear lattices.

This solution, called SPO2 from here on, will be compared
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to an orbit we call SPO1, which keeps every two particles
fixed, with the ones in between executing exactly opposite
oscillations. This latter one was originally mentioned in a
paper by Ooyama et al. �14� and later studied analytically by
Budinsky and Bountis �15� to determine its stability proper-
ties in the thermodynamic limit of large N and E with E

N
fixed. Recently, it was reexamined by Antonopoulos et al.
�11�, in a study of different SPO’s and different Hamilto-
nians, from the viewpoint of connecting their local and glo-
bal stability properties.

Our first result about the SPO2 orbit is that the energy per
particle of its first destabilization goes to zero faster than
SPO1, by a law

E2u

N �N−2, in contrast to the SPO1 orbit
whose law is

E1u

N �N−1 as N→� �11,15�. This implies that if
chaos is to spread in the nonlinear lattice as a result of the
destabilization of SPO’s, it might be more useful to look
closely at the properties of SPO2, as that becomes unstable
much earlier than SPO1, as N increases.

Remarkably enough, when we do this we discover that the
energy �or �� values of the first destabilization as a function
of N practically coincide with those found by Ref. �8,9� for
the transition to “weak” chaos and Ref. �10� for destabiliza-
tion of the q=3 mode. Our numerical results and their ana-
lytical formula are in excellent agreement.

We then examine the dynamics in more detail, following
the first destabilization of SPO1 and SPO2 at E=E1u and E
=E2u, respectively, at high enough N. In particular, we
choose initial conditions in the vicinity of these orbits and
find that the �positive� Lyapunov exponents, at energies just
above E1u and E2u, fall off to zero following distinct curves,
both for SPO1, which destabilizes by a period-doubling type
of bifurcation, and SPO2, which exhibits a complex instabil-
ity with its monodromy eigenvalues exiting the unit circle in
complex conjugate pairs. However, as the energy increases
further, the Lyapunov spectra near SPO1 and SPO2 begin to
converge, at some E�E1u�E2u, to the same functional
form, implying that the chaotic regions of SPO1 and SPO2
have “merged” and large-scale chaos has spread in phase
space.

The function to which the Lyapunov spectra converge is a
nearly exponentially decaying curve of the form

Li�N� � e−�i/N, i = 1,2, . . . ,K�N� , �2�

at least up to K�N�� 3N
4 , as we have discussed at length in a

recent publication �11�. This function provides, in fact, an
invariant of the dynamics, in the sense that, in the thermo-
dynamic limit, we can use it to evaluate the average of the
positive Lyapunov exponents �i.e., the Kolmogorov-Sinai en-
tropy per particle� and find that it is a constant characterized
by the value of the exponent � appearing in �2�.

Thus, we argue that studying the local dynamics around
some of the simplest periodic orbits which destabilize at low
energies opens a “window” into the “global” dynamics of
nonlinear lattices. Furthermore, by computing and compar-
ing Lyapunov spectra in their vicinity, it is possible to gain
valuable insight into the conditions for large-scale chaos and
ergodicity, so that we may be able to define probability dis-
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tributions and compute thermodynamic properties of the lat-
tice, as E and N increase indefinitely with E /N fixed.

Our paper is organized as follows: In Sec. II we provide
analytical expressions of the SPO1 and SPO2 solutions un-
der study and describe in detail their stability properties for
an arbitrarily large number of particles of the FPU � model
with fixed boundary conditions. Comparing with similar
findings in the literature, we observe that our results accu-
rately predict the onset of “weak” chaos preceding the break-
down of FPU recurrences, although the reasons for this
agreement are still under investigation. In Sec. III, we use
our results on the convergence of Lyapunov spectra, as the
energy is increased beyond the destabilization thresholds of
SPO1 and SPO2 to estimate the onset of large-scale chaos
and thermodynamic behavior in the lattice and in Sec. IV we
present our conclusions. We thus believe that today, 50 years
after its famous discovery, the Fermi-Pasta-Ulam problem
and its transition from recurrences to globally chaotic behav-
ior is still very much alive as a topic of intense research into
some truly fundamental questions connecting classical and
statistical mechanics �16�.

II. SIMPLE PERIODIC ORBITS AND STABILITY
ANALYSIS

A. Analytical results for SPO1

Let us start by describing briefly some analytical results
concerning SPO1, as this particular mode has been studied
recently by Antonopoulos et al. �11� and also previously in
Refs. �14,15�.

We consider, for this reason, a one-dimensional lattice of
N particles with equal masses and nearest-neighbor interac-
tions with quartic nonlinearities �� model� which is given by
the FPU Hamiltonian �1�, with fixed boundary conditions

x0�t� = xN+1�t� = 0, " t . �3�

For �=0, Hamiltonian �1� describes a system of coupled
harmonic oscillators and hence all solutions can be written as
combinations of N independent normal modes whose indi-
vidual energies are constant in time. Since, in that case, the
spectrum has frequencies �q=2 sin��q /2�N+1��, which are
rationally independent, all solutions are quasiperiodic, and
hence the only strictly periodic solutions are the normal
modes, with frequencies �q , q=1,2 , . . . ,N �6,10,16�. That
these modes can be continued for ��0 is a consequence of
a famous theorem by Lyapunov �17�, based on the assump-
tion that no ratio of linear frequencies �q /�r is an integer,
for q ,r=1,2 , . . . ,N, which holds in this case. These solutions
are examples of what we call SPO’s, in which all particles
return to their starting point after one maximum �and one
minimum� in their oscillation �11�.

Let us consider one such orbit—we shall call SPO1—
which is specified by the conditions

x̂2j�t� = 0, x̂2j−1�t� = − x̂2j+1�t� 	 x̂�t�, j = 1, . . . ,
N − 1

2
,

�4�

and exists for all odd N, keeping every even particle station-

ary at all times. It is not difficult to show that this is, in fact,
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the q= �N+1� /2 mode of the linear lattice with frequency
�q=
2. The remarkable property of this solution is that it is
continued in precisely the same spatial configuration in the
nonlinear lattice as well, due to the form of the equations of
motion associated with Hamiltonian �1�,

ẍj�t� = xj+1 − 2xj + xj−1 + �„�xj+1 − xj�3 − �xj − xj−1�3
…,

j = 1, . . . ,N , �5�

which reduce, upon using Eq. �4� with Eq. �3�, to a single
second-order nonlinear differential equation for x̂�t�,

ẍ̂�t� = − 2x̂�t� − 2�x̂3�t� , �6�

describing the oscillations of all moving particles of SPO1,
with j=1,3 ,5 , . . . ,N. For the stationary particles j
=2,4 ,6 , . . . ,N−1, of course, we have x̂�t�=0, "t	0. The
solution of Eq. �6� is well known in terms of Jacobi elliptic
functions �18� and can be written as

x̂�t� = C cn�
t,�2� , �7�

where

C2 =
2�2

��1 − 2�2�
, 
2 =

2

1 − 2�2 , �8�

and �2 is the modulus of the cn elliptic function. The energy
per particle of SPO1 is then found to be

E

N + 1
=

1

4
C2�2 + C2�� =

�2�1 − �2�
��1 − 2�2�2 �9�

by substituting simply the solution x̂�t� of Eq. �7� in Hamil-
tonian �1�.

The linear stability analysis of the SPO1 mode is straight-
forward and was carried out recently in Ref. �11� using Lamé
equations, Hill’s determinants, and Floquet theory. Plotting
the first destabilization energy for this orbit as a function of
N with solid lines in Fig. 1, we observe that the correspond-
ing energy density threshold

E1u

N decreases with N following a
simple power law �1/N �dashed line�. Following such an
approach, we find, for example, for �=1 and N=11, that

FIG. 1. The solid curve is the energy per particle,
E1u

N , of the first
destabilization of the SPO1 for �=1 while the dashed line is the
function �

1
N .
SPO1 destabilizes for the first time when E1u�1.93.
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B. Solution of SPO2

Let us now turn to the second simple periodic orbit stud-
ied in this paper, which we call SPO2. We impose again
fixed boundary conditions and consider lattices consisting of
N=5+3m, m=0,1 ,2 , . . ., particles, in which every third par-
ticle is fixed, while the two in between move in opposite
directions as follows:

x3j�t� = 0, j = 1,2,3, . . . ,
N − 2

3
, �10�

xj�t� = − xj+1�t� = x̂�t�, j = 1,4,7, . . . ,N − 1. �11�

This solution, in fact, corresponds to the q=2�N+1� /3 nor-
mal mode with frequency �q=
3 of the linear system and
can also be continued in exactly the same form in the non-
linear case ��0, due to the symmetry of the equations of
motion,

ẍj�t� = xj+1 − 2xj + xj−1 + �„�xj+1 − xj�3 − �xj − xj−1�3
…,

j = 1, . . . ,N , �12�

which, under the above conditions �10� and �11� collapse to a
single second-order nonlinear differential equation very simi-
lar to �6�:

ẍ̂�t� = − 3x̂�t� − 9�x̂3�t� . �13�

As before, this equation describes the moving particles of
the lattice, while the stationary ones satisfy x̂�t�=0, "t	0,
for j=3,6 ,9 , . . . ,N−2. The solution of Eq. �13� is again
given in terms of the Jacobi elliptic functions �18� and is
written in the form

x̂�t� = C cn�
t,�2� , �14�

where

C2 =
2�2

3��1 − 2�2�
, 
2 =

3

1 − 2�2 , �15�

and �2 is, again, the modulus of the cn elliptic function. The
energy per particle of the SPO2 mode is found now to be

E

N + 1
=

2�2�1 − �2�
3��1 − 2�2�2 �16�

by simply substituting the solution x̂�t� of Eq. �13� in Hamil-
tonian �1�.

In order to perform the linear stability analysis of the
SPO2 mode we set xj = x̂j +yj in the equations of motion �12�
and keep up to linear terms in the small displacement vari-
able yj. We thus get the variational equations for this orbit in
the form

ÿ j�t� = A3yj−1 + A1yj + A2yj+1, j = 1,4,7, . . . ,N − 1,

�17�

ÿ �t� = A y + A y + A y , j = 2,5,8, . . . ,N , �18�
j 2 j−1 1 j 3 j+1
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ÿ j�t� = A3�yj−1 − 2yj + yj+1�, j = 3,6,9, . . . ,N − 2,

�19�

where y0=yN+1=0 and

A1 = − 2 − 15�x̂2�t� , �20�

A2 = 1 + 12�x̂2�t� , �21�

A3 = 1 + 3�x̂2�t� . �22�

Unfortunately, it is not as easy to uncouple the above
linear system of differential equations and study the stability
of the SPO2, in terms of independent Lamé equations, as we
were able to do with SPO1 �11�. We can, however, compute
numerically with arbitrary accuracy and for every given N
=5+3m, m=0,1 ,2 , . . ., the complex eigenvalues 
i, i
=1, . . . ,2N, of the corresponding monodromy matrix and
characterize the stability of the SPO2 by their position on the
complex plane with regard to the unit circle.

We have thus computed, for many values of N=5+3m,
m=0,1 ,2 , . . . ,98, the energy E2u�N� of the first destabiliza-
tion of the SPO2 for �=1 and have plotted the results with
solid lines in Fig. 2�a�. As we see, the energy density

E2u

N at
the first instability decreases following a power law �1/N2

�dashed line� which is faster than the SPO1 solution we dis-
cussed earlier; see Fig. 1. Following this approach, we find,
for �=1 and N=11, that SPO2 destabilizes for the first time
when E2u�0.153.

Interestingly enough, if we calculate the eigenvalues of
the monodromy matrix of the SPO2 for greater energies, we
find that it becomes again stable, beyond a new critical en-
ergy E2s�N�. In Fig. 2�b� we plot this restabilization energy
density of SPO2 as a function of log N and observe that it
approaches a constant as N tends to infinity.

Pursuing further this restabilization phenomenon, we have
estimated the “size” of the islands of stability around SPO2
for energies above the energy threshold E2s�N�, using the
method of the smaller alignment index �SALI� �19–22�. This
index has proved to be very efficient for distinguishing rap-
idly and with certainty regular versus chaotic orbits, as it
exhibits completely different behavior in these two cases: It
fluctuates around nonzero values for regular orbits, while it
converges exponentially to zero for chaotic orbits. SALI is
particularly useful in the case of many degrees of freedom,
where very few such methods are available beyond the cum-
bersome and often inconclusive calculation of the maximal
Lyapunov exponent.

We thus observe the following: As the energy E increases
beyond the restabilization threshold E2s�N�, for fixed N, the
“size” of the island around SPO2 changes very little, com-
pared with the growth of the system’s available phase space.
Moreover, if we keep E

N fixed, thus holding the “radius” of
the energy surface nearly constant, we find that the “radius”
of the SPO2 island diminishes as a function of E. This is
done by changing one of the particles’ position and momen-
tum by �x and �px away from its SPO2 values while keep-
ing the energy constant and using SALI to estimate �xmax at

E
which we reach chaos �e.g., with N =4 and N=5,8 ,11,14,
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we find, respectively, �xmax�0.01,0.005,0.0025,0.002�. We
therefore conclude that the island of ordered motion around
the SPO2 solution should be of no consequence to the statis-
tical properties of the lattice, such as ergodicity and the defi-
nition of thermodynamic quantities.

Moreover, as we observe in Figs. 3�a� and 3�c�, the kinds
of bifurcation leading to instability for these SPO’s are very
different: In the case of SPO1, Fig. 3�a� shows that the bi-
furcation is of the period-doubling type, as one pair of real
eigenvalues is seen to exit the unit circle at −1, while Fig.
3�c� shows that we have complex instability in the case of
SPO2. This is also indicated by the positive Lyapunov expo-
nents in the immediate vicinity of the SPO’s �about 10−12

from them�, which are closely connected with the eigenval-
ues of the corresponding variational equations and are shown
in Figs. 3�b� and 3�d� with solid lines. Of course, moving
away from the two modes �within a range of about
10−11–10−2�, the Lyapunov spectra change into the familiar
form of two smoothly decaying, evidently different curves,
plotted with dashed lines in Figs. 3�b� and 3�d�. This fact
suggests that the chaotic regions near these modes are sepa-
rated from each other in phase space.

It is quite interesting to observe that the chaotic region
about an unstable SPO can be isolated in phase space from
the chaotic motion occurring in different domains. In fact,

FIG. 2. �a� The solid curve is the energy density
E2u

N of the first
destabilization of the SPO2 obtained by numerical evaluation of the
eigenvalues of the monodromy matrix, while the dashed line is �

1
N2 .

�b� The energy density
E2s

N of the first restabilization of the SPO2
obtained by the same method as in �a�. In this figure �=1.
there may be several such domains embedded into each
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other. For example, in the N=5 FPU � model, when SPO1
becomes unstable, a “figure-8” chaotic region becomes
clearly visible in its immediate neighborhood, on a Poincaré
surface of section �x1 , ẋ1� taken at times when x3=0 �see Fig.
4�. Even though the SPO1 mode is unstable, nearby orbits
oscillate about it for very long times, forming eventually the
figure-8 we see in the picture.

More surprisingly however, starting at points a little far-
ther away, a different chaotic domain is observed which
bears a vague resemblance to the figure-8 and does not
spread to the full energy surface. Of course, if one chooses
more distant initial conditions, a large-scale chaotic region
becomes evident on the surface of section of Fig. 4.

We have checked that the Lyapunov exponents in these
regions are quite different from each other, at least when one
integrates the equations of motion up to t=105. Of course, if
an orbit lies on the “boundary” between two of these do-
mains, if integrated long enough, it may drift from the inner
to the outer chaotic region, where its Lyapunov exponents
are expected to change accordingly.

In Sec. III, we will study in more detail the relative loca-
tion of chaotic domains in phase space and argue that these
will “overlap” when their respective Lyapunov spectra begin
to converge as a function of increasing energy for fixed N.

C. Comparison with results in the literature

It was shown very recently in Ref. �10� that the linear

FIG. 3. �a� The period-doubling bifurcation of SPO1 for N=11
starting very close to SPO1 and another a little farther away, for the
N=11 at the energy E=0.5 after its first destabilization. �d� The Lya
another more distant from SPO2 for the same N and E as in panel
modes of the FPU � model can be continued as SPO’s of the
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corresponding nonlinear lattice—i.e., as exact, time periodic
solutions—having nearly the same spatial configuration and
frequency as in the linear case. These new solutions are char-
acterized by exponential localization in the q space of the
normal modes Qj�t�, j=1, . . . ,2N, and preserve their stability
for small enough ��0. In fact, the energy threshold for the
destabilization of the q=3 solution found by Ref. �10� coin-
cides with the “weak”-chaos threshold determined by De
Luca, Lichtenberg, and Lieberman �8�.

In this section, we show that the energy threshold found in
Refs. �8� and �10� also appears to coincide with the instabil-
ity threshold of the SPO2 mode. This is somewhat surprising
since, in all studies of the breakdown of FPU recurrences so
far, the wave number q of the periodic solutions responsible
for the transition to “weak” chaos is low �q4�, while our
SPO2 mode has a considerably higher wave number q
=2�N+1� /3.

Thus, using different approaches, the authors of Refs. �8�
and �10� report an approximate formula, valid to order O� 1

N2 �,
for the destabilization energy of the q-breather solution with
wave number q=3 given by

Ec �
�2

6��N + 1�
. �23�

In Fig. 5 we compare the approximate formula �23�

the energy E=2.2. �b� The Lyapunov spectrum of two orbits, one
e N and E as in panel �a�. �c� The complex instability of SPO2 for
v spectrum of two similar orbits, one in the immediate vicinity and
In this figure �=1.
at
sam

puno
�dashed line� with our destabilization threshold for SPO2
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obtained by the monodromy matrix analysis of Sec. II B
�solid line�, for �=0.0315, following Ref. �10�. We clearly
observe very good agreement between our numerical results
and those of �23�.

The reasons for this agreement are not yet clear to us. Of
course, if one wanted to look for a chaotic transition via the
destabilization of SPO’s, it would be natural to analyze first
SPO2 rather than SPO1, since SPO2 becomes unstable for
lower energies. Perhaps the power law

E2u

N �1/N2 is impor-
tant as it is the same in formula �23� as well as our SPO2
stability results. Still, the agreement between the two curves
in Fig. 5 cannot be due only to the coincidence of power
laws. The proportionality factors in the corresponding formu-
las must also be nearly the same.

III. CONVERGENCE OF LYAPUNOV SPECTRA

Let us now start from the neighborhood of the SPO1 and
SPO2 modes and examine systematically the onset of large-
scale chaos in the system as the energy is increased above
the instability thresholds E1u�N� and E2u�N�. To do this, we
need to evaluate the Lyapunov exponents Li, i=1, . . . ,2N,
near the SPO’s �ordered as L1�L2� ¯ �L2N�, which mea-
sure the rate of exponential divergence of nearby orbits in
different directions of phase space as time goes to infinity
�1,23,24�.

Note that Fig. 3 reveals that when one calculates
Lyapunov exponents starting very close ��10−12� to a peri-
odic orbit, one finds that they are closely related to the ei-
genvalues of the monodromy matrix of the local dynamics.
In Figs. 3�c� and 3�d�, we have plotted these quantities for
the SPO2 mode at an energy where it has undergone a com-
plex bifurcation and has two pairs of eigenvalues off the unit
circle on the complex plane.

For comparison, we have also calculated in Fig. 3�a� the

FIG. 4. The figure-8 chaotic region for initial conditions in the
immediate vicinity of SPO1 ��10−5�, a vague resemblance to the
figure-8 for initial conditions a little farther away ��10−1� and a
large-scale chaotic region in the energy surface for initial conditions
more distant ��1� for N=5 particles, when it is unstable, on the
Poincaré surface of section �x1 , ẋ1� computed at times when x3=0.
In this picture we integrated our orbits up to tn=105 in the energy
surface E=7.4.
eigenvalues of the monodromy matrix of the SPO1 mode at
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an energy where it is unstable with only one pair of eigen-
values off the unit circle on the real negative axis. As we see
in Fig. 3�b�, very near this orbit the Lyapunov spectrum is
again in close agreement with the local results. Of course, in
both cases, starting with initial conditions a little farther
away yields the true spectrum, as a smoothly decaying curve,
which is an invariant of the dynamics in that region �see the
dashed lines in Figs. 3�b� and 3�d��.

Thus, in the neighborhood of unstable SPO’s, one can
easily find evidence of “small”-scale chaos, which is visible
at energies where these orbits have just destabilized. This,
however, is only a local effect, which may have nothing to
do with the chaotic behavior anywhere else in the system.
How could we use the dynamics near SPO’s to obtain more
global properties of the motionlike, e.g., the onset of large-
scale chaos in phase space?

One way to answer might be to test whether the chaotic
regions of the two SPO’s become “connected” in phase
space, above a certain value of the energy. Evidence that
such “merging” of chaotic regions in phase space indeed
occurs can be provided by their maximal �L1� Lyapunov ex-
ponents becoming equal and, more specifically, by the con-
vergence of the corresponding Lyapunov spectra in their vi-
cinity to an exponential function with a characteristic
exponent.

To see this, let us proceed to exhibit in Fig. 6�a� the
Lyapunov spectra of two neighboring orbits of the SPO1 and
SPO2 modes �all orbits in this figure start at distances �10−2

from the SPOs in phase space�, for N=11 degrees of freedom
and energy values E1=1.94 and E2=0.155, respectively,
where the SPO’s have just destabilized. As expected, in this
case, the maximum Lyapunov exponents L1 are very small
��10−4� and the corresponding Lyapunov spectra are quite
distinct.

Turning now to Fig. 6�b�, we observe that at the energy
value E=2.1, the Lyapunov spectra for both SPO’s are much
closer to each other, even though their maximal Lyapunov
exponents L1 are still different. Furthermore, in Fig. 6�c�, at
E=2.62, we see that the two spectra have nearly converged

FIG. 5. The solid curve corresponds to the energy E2u�N� of the
first destabilization of the SPO2 for �=0.0315 obtained by numeri-
cal evaluation of the eigenvalues of the monodromy matrix, while
the dashed line corresponds to the approximate formula �23� for the
q-breather solution.
to the same exponentially decreasing function,
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Li�N� � e−�i/N, i = 1,2, . . . ,K�N� , �24�

at least up to K�N�� 3N
4 , while their maximal Lyapunov ex-

ponents are virtually the same. The � exponents of �24� for
the SPO1 and SPO2 are found to be approximately 2.3 and
2.32, respectively. Finally, Fig. 6�d� shows that this coinci-
dence of Lyapunov spectra persists at higher energies.

We regard this coincidence as an indication that the cha-
otic regions of the two SPO’s have “merged” in phase space
in the sense that they “communicate,” as orbits starting ini-
tially in the vicinity of one SPO may now visit the chaotic
region of the other. This is strong evidence of the existence
of large scale chaos in the FPU lattice, at least over the part
of phase space traveled by the SPO1 and SPO2 orbits, during
their time evolution.

IV. CONCLUSIONS

In this paper we investigated the connection between local
and global dynamics in the FPU � model from the point of
view of stability of its SPO’s. Initially, we showed that a
relatively high-q mode of the linear lattice, with one particle
fixed every two oppositely moving ones, called SPO2, is
stable for low energies until it undergoes complex instability.
In parallel, we also studied the properties of another mode
called SPO1, which keeps every two particles fixed, with the
ones in between executing exactly opposite oscillations.

FIG. 6. �a� Lyapunov spectra of neighboring orbits of SPO1 and
they respectively have just destabilized. �b� Same as in panel �a� a
Convergence of the Lyapunov spectra of neighboring orbits of th
Coincidence of Lyapunov spectra continues at higher energy E=4.
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Our first result concerning these orbits is that the energy
threshold of the first destabilization of SPO2 goes to zero
faster than that of SPO1. Additionally, we discovered that, as
a function of N, the SPO2 destabilization threshold coincides
with the one found by other researchers for the transition to
“weak” chaos and the destabilization of the q=3 mode. This
implies that if chaos is to spread as a result of the destabili-
zation of SPOs in the FPU lattice, one might as well look
closely at the properties of the SPO2, as that becomes un-
stable much earlier than SPO1, as N increases arbitrarily.

In order to examine their local dynamics in more detail,
we raised the energy above the destabilization of SPO1 and
SPO2 and calculated the Lyapunov spectra in their neighbor-
hood. We thus found that, as E increases, the Lyapunov spec-
tra in the neighborhood of these SPO’s appear to converge, at
some relatively low-energy value, to the same functional
form, implying that their chaotic regions have “merged” and
large-scale chaos has spread in the FPU lattice.

We therefore argue that by studying local dynamics near
some of the simplest periodic orbits which destabilize at low
energies, one can gain a better view of the “global” dynamics
of nonlinear lattices. Furthermore, by computing and com-
paring Lyapunov spectra in the vicinity of such orbits, it is
possible to obtain valuable insight into the conditions for �or
obstructions to� full-scale chaos and ergodicity, so that we
may be able to define probability distributions and compute

2, respectively, for N=11 at energies E=1.94 and E=0.155, where
rgy E=2.1 for both SPO’s, where the spectra are still distinct. �c�
o SPO’s at energy E=2.62 where both of them are unstable. �d�
nitial distances between nearby trajectories are �10−2.
SPO
t ene
e tw
thermodynamic properties of the lattice, as the energy and
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number of degrees of freedom increase indefinitely, while the
energy density is kept fixed.
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